International Journal of Theoretical Physics, Vol. 41, No. 1, January 2G02q02)
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The Wheeler-DeWitt equation of arbitrary Hartle—Hawking factor ordering for sev-
eral minisuperspace universe models, such as the pure gravity Friedmann—Robertson—
Walker and Taub ones, is mapped onto the dynamics of corresponding classical oscil-
lators. The latter ones are studied by the classical Ermakov invariant method, which is
a natural approach in this context. For the more realistic case of a minimally coupled
massive scalar field, one can study, within the same type of approach, the corresponding
squeezing features as a possible means of describing cosmological evolution. Finally,
we comment on the analogy with the accelerator physics.

The formalism of Ermakov-type invariants (Ermakov, 1880; Kaushal, 1998)
can be a useful, alternative method of investigating evolutionary and chaotic dy-
namical problems in the “quantum” cosmological framework (Cotsekial.,

1998; Kim, 1996). Moreover, the method of adiabatic invariants is intimately
related to geometrical angles and phases (Anaredasd., 1997; Berry, 1984;
Hannay, 1985; Shapere and Wilczek, 1989) so that one may think of cosmological
Hannay’s angles as well as various types of topological phases (Dutta, 1993a,b).
In the following we apply the formal Ermakov scheme to some of the simplest
cosmological pure gravity oscillators, such as the empty Friedmann—Robertson—
Walker (EFRW) “quantum” universes and the anisotropic Taub ones. The EFRW
Wheeler—DeWitt (WDW) minisuperspace equation reads (Moncrief and Ryan,
1991; Obregh and Socorro, 1996; Rosu, 1998)

2y v
% + QZ—Q — ke Y(Q) =0, (1)
where Q, assumed nonzero (Rosu and Socorro, 1998) and kept as a free pa-
rameter, is the Hartle—Hawking (HH) parameter for the factor ordering (Hartle
and Hawking, 1983), the variabk is Misner’s time (Misner, 1969a,b), and
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is the curvature index of the FRW universe= 1, 0,—1 for closed, flat, open
universes, respectively. Fer= +1 the general solution is expressed in terms of
Bessel functions, (Q2) = e 2 (Cylq(3672?) + CoK,(3672%)) and W, (Q) =

e 22 (C1J,(367%) + CoYu(3€72Y), respectively, wherer = Q/4. The case

« = 0 is special/degenerate, leads to hyperbolic functions and will not be dealt
with here. Equation (1) can be mapped in a known way to the canonical equations
for a classical point particle of madd = QQQ, generalized coordinaig = W,
momentump = eR¢W, (i.e., velocityv = W), and identifying Misner’s time

with the classical Hamiltonian time. Thus, one is led to

dq

. 99 _ o
1= =¢ P (2)
o= AP _  (o-a0

These equations describe the canonical motion for a classical EFRW point universe
as derived from the time-dependent Hamiltonian of the inverted oscillator type
(Baskoutas and Jannussis, 1992)

2 2
Hal(€2) = e‘QQ% - Ke(Q—‘m%. (@)

For this classical EFRW Hamiltonian the triplet of phase-space funciigrs
%2, T, = pg, and T3 = q—; forms a dynamical Lie algebra (i.ed = >, hn(2)
Ta(p, 9)), which is closed with respect to the Poisson bracket, or more exactly
{T1, To} = —2Ty, {T, T3} = —2T;3, {T1, T3} = —T>». Using this algebrad reads

Ho = e Q9T — el Q99T (5)

The Ermakov invarianf belongs to the dynamical algebra, i.e., one can write
Z=>,&(R)T:, and by means o% = —{Z, H} one is led to the following
equations for the functions (2):

€ + Z |:Z Crr,mhm(Q):| en =0, (6)

whereC|,, are the structure constants of the Lie algebra that have been already
given above. Thus, we get

€1 = —ZE_QQGQ
€r = —KG(Q74)Q€1 — eﬁQQE3 (7)
é3 = —ZKG(Q_4)Q€2.

The solution of this system can be readily obtained by setting p? giving
e, = —e%%p ) andez = 22 p2 4 p_lz, wherep is the solution of the Milne—Pinney
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(MP) equation (Milne, 1930; Pinney, 195@)+ Qp — ke~ **p = &~ 2. Thereis

a well-defined prescription going back to Pinney’s note in 1950 of writiras

a function of the particular solutions of the corresponding parametric oscillator
problem, i.e., the modified Bessel functions in the EFRW case. In the formulas
herein, we shall keep the symhwfor this known function. In terms of the function
p(2) the Ermakov invariant reads (Lewis, 1968)

P2 @ @9 g2
o = S b= w5 (%) @

I

Terrw =

Next, we calculate the time-dependent generating function allowing one to
pass to new canonical variables for whiEls chosen to be the new “momentum”

S(@, P =7,é(Q)) = [*dq p(d’, Z, (%)) leading to
/22,02 —q2
r[\/—} 2p2

where we have put to zero the constant of integration. Thus; g-; =
arcsin(JL). Moreover, the canonical variables are nqw= p+/27 sing and

S, Z, €(Q)) = eQQq p +IarCS| (9)

p = */_(cose + eQQpp sing). The dynamical angle will be\g9 = fQ (PHhne

=/ [epng — 1.9(eR% pp) + 6% p?]dQY’, whereas the geometrlcal angle
readsA69 = %f [W(eQQ op) — 29 5?]dQ’. Thus, the total change of angle
sz - o

is AO = d2’. On the Misner time axis, going teco means going to
the origin of the universe, where&g = 0 means the present epoch. Using these
cosmological limits we obtaithe interesting resulthat the total change of angle
A6 during the cosmological evolution if2 time can be written up to a sign as
the Laplace transform of paramei@rof the inverse square of the MP function,
A8 = —Ly,,2(Q).

We now briefly sketch the two-dimensional empty minisuperspace Taub
model for which the Taub WDW equation reads

W 2y 40
— — + e V(B)Y =0, 10
o a/32+Q C e v(p) (10)
whereV(8) = %(e—f’ﬁ — 4e~2P). This equation can be separated in the variables
X1 = —4Q — 88 andx, = —4Q — 28. Thus, one gets the following two indepen-
dent 1D problems for which the Ermakov procedure can be repeated along the
lines of the EFRW case:

d?Wry Qdvrg w? .
dx@ 12 dx <_ - 1° )q’” =0 (11)
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and

d®¥r, Qd¥r, 5> 1
- — — —e2 |V, =0. 12
a3 dx +<“’ 9ex> 12=0 (12)

The quantityw/2 is the separation constant, which is physically related to the
wavenumber of a positive energy level in a Schroedinger interpretation. The
solutions are Wyy = Wy, = ez, (ie¥/2/6) and Wi, = Wr,, =
elQ/eez,  (i2e2/?/3), respectively, wherex; = /w? —(Q/12¢ and ap =
V4w? — (Q/3)2. The standard Ermakov procedure can be applied to each of the
Egs. (11) and (12).

A more realistic case is provided by the minimally coupled FRW massive-
scalar-field minisuperspace model. The Ermakov approach, which differs from the
previous one, will be studied in detail elsewhere. The WDW equation reads

[0 + Qdq — 37 — ke ** + mPe *%¢?]W(Q, ¢) = 0, (13)

and can be written as a two-component Schroedinger equation (see e.g.,

Mostafazadeh, 1998). This allows one to think of cosmological squeezed states

based on the Ermakov approach (Hartley and Ray, 1982; Pedrosa, 1987; Pedrosa

and Bezerra, 1997). For this one makes use of the factorization of the Ermakov

invariantZ = h(bbf + ), whereb = (2h)‘1/2[% +i(pp — e°%%pq)] and bf =

(2h)—1/2[% —i(op — e2%pq)]. Q. is a fixed HH factor ordering parameter. Let

us now consider a reference Misner-time—independent oscillator with the Misner

frequencywg corresponds to an arbitrary epo€ly for which one can write

the common factorizing operatoss= (2hwg) ?[woeq + ip], al = (2hw) /2

[wog — ip]- The connection between theandb pairs is given by(2) = u(R)a +

p(Q)al and bf(Q) = u*(Q)a’ + v*(Q)al, where w(Q) = (4wo) Y?[p~t -

e + wop] and v(R) = (dwo) V?[p1 — i€y — wop] fulfill the well-

known relationshigu()|? — |v()|? = 1. The corresponding uncertainties are

known to be AQ)® = 5-|u—v[? (Ap)> = 22| +v[? and Ag)(Ap) =

%IN« + v||u — v| showing that in general the Ermakov squeezed states are not

minimum uncertainty states (Pedrosa, 1987; Pedrosa and Bezerra, 1997).
Finally, we recall that (Courant and Snyder, 1958; also see second foot-

note in Lewis (1976)), the Ermakov invariant is equivalent to the Courant—Snyder

one in accelerator physics, which defines the admittance of the accelerating device.

This allows in a certain sense a beam physics approach to cosmological evolution.

The point is that under the assumption of no coupling between the radial and the

vertical betatron oscillations, the latter ones are described by the Hill equation

7' + n(s)k2z = 0, wheren is the magnetic field index, ang is the curvature of

the orbit parametrized by that may be considered as a counterparfofThe

solutions can be written a. = w(s)e*'¥® and only a real/ leads to bounded

oscillations. The amplitude(s) satisfies an MP equation and moreoyes w—2.
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However, in “quantum” cosmology; is a pure imaginary action functional lead-
ing to instabilities in thel solutions. In other words, while in accelerators we
are interested in stable periodic solutions, in “quantum” cosmology there are the
unstable parametric solutions that come into play.
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