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The Wheeler–DeWitt equation of arbitrary Hartle–Hawking factor ordering for sev-
eral minisuperspace universe models, such as the pure gravity Friedmann–Robertson–
Walker and Taub ones, is mapped onto the dynamics of corresponding classical oscil-
lators. The latter ones are studied by the classical Ermakov invariant method, which is
a natural approach in this context. For the more realistic case of a minimally coupled
massive scalar field, one can study, within the same type of approach, the corresponding
squeezing features as a possible means of describing cosmological evolution. Finally,
we comment on the analogy with the accelerator physics.

The formalism of Ermakov-type invariants (Ermakov, 1880; Kaushal, 1998)
can be a useful, alternative method of investigating evolutionary and chaotic dy-
namical problems in the “quantum” cosmological framework (Cotsakiset al.,
1998; Kim, 1996). Moreover, the method of adiabatic invariants is intimately
related to geometrical angles and phases (Anandanet al., 1997; Berry, 1984;
Hannay, 1985; Shapere and Wilczek, 1989) so that one may think of cosmological
Hannay’s angles as well as various types of topological phases (Dutta, 1993a,b).
In the following we apply the formal Ermakov scheme to some of the simplest
cosmological pure gravity oscillators, such as the empty Friedmann–Robertson–
Walker (EFRW) “quantum” universes and the anisotropic Taub ones. The EFRW
Wheeler–DeWitt (WDW) minisuperspace equation reads (Moncrief and Ryan,
1991; Obreg´on and Socorro, 1996; Rosu, 1998)

d29

dÄ2
+ Q

d9

dÄ
− κe−4Ä9(Ä) = 0, (1)

where Q, assumed nonzero (Rosu and Socorro, 1998) and kept as a free pa-
rameter, is the Hartle–Hawking (HH) parameter for the factor ordering (Hartle
and Hawking, 1983), the variableÄ is Misner’s time (Misner, 1969a,b), andκ
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is the curvature index of the FRW universe;κ = 1, 0,−1 for closed, flat, open
universes, respectively. Forκ = ±1 the general solution is expressed in terms of
Bessel functions,9α(Ä) = e−2αÄ (C1Iα( 1

2e−2Ä)+ C2Kα( 1
2e−2Ä)) and9α(Ä) =

e−2αÄ (C1Jα( 1
2e−2Ä)+ C2Yα( 1

2e−2Ä)), respectively, whereα = Q/4. The case
κ = 0 is special/degenerate, leads to hyperbolic functions and will not be dealt
with here. Equation (1) can be mapped in a known way to the canonical equations
for a classical point particle of massM = eQÄ, generalized coordinateq = 9,
momentump = eQÄ9̇, (i.e., velocityv = 9̇), and identifying Misner’s timeÄ
with the classical Hamiltonian time. Thus, one is led to

q̇ ≡ dq

dÄ
= e−QÄp (2)

ṗ ≡ dp

dÄ
= κe(Q−4)Äq. (3)

These equations describe the canonical motion for a classical EFRW point universe
as derived from the time-dependent Hamiltonian of the inverted oscillator type
(Baskoutas and Jannussis, 1992)

Hcl(Ä) = e−QÄ p2

2
− κe(Q−4)Äq2

2
. (4)

For this classical EFRW Hamiltonian the triplet of phase-space functionsT1 =
p2

2 , T2 = pq, andT3 = q2

2 forms a dynamical Lie algebra (i.e.,H =∑n hn(Ä)
Tn(p, q)), which is closed with respect to the Poisson bracket, or more exactly
{T1, T2} = −2T1, {T2, T3} = −2T3, {T1, T3} = −T2. Using this algebraHcl reads

Hcl = e−QÄT1− κe(Q−4)ÄT3. (5)

The Ermakov invariantI belongs to the dynamical algebra, i.e., one can write
I =∑r εr (Ä)Tr , and by means of∂I

∂Ä
= −{I, H} one is led to the following

equations for the functionsεr (Ä):

ε̇r +
∑

n

[∑
m

Cr
nmhm(Ä)

]
εn = 0, (6)

whereCr
nm are the structure constants of the Lie algebra that have been already

given above. Thus, we get

ε̇1 = −2e−QÄε2

ε̇2 = −κe(Q−4)Äε1− e−QÄε3 (7)

ε̇3 = −2κe(Q−4)Äε2.

The solution of this system can be readily obtained by settingε1 = ρ2 giving
ε2 = −eQÄρρ̇ andε3 = e2QÄρ̇2+ 1

ρ2 , whereρ is the solution of the Milne–Pinney
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(MP) equation (Milne, 1930; Pinney, 1950), ¨ρ + Qρ̇ − κe−4Äρ = e−2QÄ

ρ3 . There is
a well-defined prescription going back to Pinney’s note in 1950 of writingρ as
a function of the particular solutions of the corresponding parametric oscillator
problem, i.e., the modified Bessel functions in the EFRW case. In the formulas
herein, we shall keep the symbolρ for this known function. In terms of the function
ρ(Ä) the Ermakov invariant reads (Lewis, 1968)

IEFRW= (ρp− eQÄρ̇q)2

2
+ q2

2ρ2
= e2QÄ

2
(ρ9̇α − ρ̇9α)2+ 1

2

(
9α

ρ

)2

. (8)

Next, we calculate the time-dependent generating function allowing one to
pass to new canonical variables for whichI is chosen to be the new “momentum”
S(q, P = I, Eε(Ä)) = ∫ q dq′p(q′, I, Eε(Ä)) leading to

S(q, I, Eε(Ä)) = eQÄq2

2

ρ̇

ρ
+ Iarcsin

[
q√

2Iρ2

]
+ q

√
2Iρ2− q2

2ρ2
, (9)

where we have put to zero the constant of integration. Thus,θ = ∂S
∂I =

arcsin( q√
2Iρ2

). Moreover, the canonical variables are nowq = ρ√2I sinθ and

p =
√

2I
ρ

(cosθ + eQÄρ̇ρ sinθ ). The dynamical angle will be1θd = ∫ Ä
Ä0
〈 ∂Hnew
∂I 〉

dÄ′ = ∫ Ä0 [ e−QÄ′

ρ2 − 1
2

d
dÄ′ (e

QÄ′ ρ̇ρ)+ eQÄ′ ρ̇2]dÄ′, whereas the geometrical angle

reads1θg = 1
2

∫ Ä
Ä0

[ d
dÄ′ (e

QÄ′ ρ̇ρ)− 2eQÄ′ ρ̇2]dÄ′. Thus, the total change of angle

is 1θ = ∫ Ä
Ä0

e−QÄ′

ρ2 dÄ′. On the Misner time axis, going to−∞ means going to
the origin of the universe, whereasÄ0 = 0 means the present epoch. Using these
cosmological limits we obtainthe interesting resultthat the total change of angle
1θ during the cosmological evolution inÄ time can be written up to a sign as
the Laplace transform of parameterQ of the inverse square of the MP function,
1θ = −L1/ρ2(Q).

We now briefly sketch the two-dimensional empty minisuperspace Taub
model for which the Taub WDW equation reads

∂29

∂Ä2
− ∂

29

∂β2
+ Q

∂9

∂Ä
+ e−4ÄV(β)9 = 0, (10)

whereV(β) = 1
3(e−8β − 4e−2β). This equation can be separated in the variables

x1 = −4Ä− 8β andx2 = −4Ä− 2β. Thus, one gets the following two indepen-
dent 1D problems for which the Ermakov procedure can be repeated along the
lines of the EFRW case:

d29T1

dx2
1

+ Q

12

d9T1

dx1
+
(
ω2

4
− 1

144
ex1

)
9T1 = 0 (11)
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and

d29T2

dx2
2

− Q

3

d9T2

dx2
+
(
ω2− 1

9
ex2

)
9T2 = 0. (12)

The quantityω/2 is the separation constant, which is physically related to the
wavenumber of a positive energy level in a Schroedinger interpretation. The
solutions are 9T1 ≡ 9Tα1 = e(−Q/24)x1 Ziα1(ie

x1/2/6) and 9T2 ≡ 9Tα2 =
e(Q/6)x2 Ziα2(i 2ex2/2/3), respectively, whereα1 =

√
ω2− (Q/12)2 and α2 =√

4ω2− (Q/3)2. The standard Ermakov procedure can be applied to each of the
Eqs. (11) and (12).

A more realistic case is provided by the minimally coupled FRW massive-
scalar-field minisuperspace model. The Ermakov approach, which differs from the
previous one, will be studied in detail elsewhere. The WDW equation reads[

∂2
Ä + Q∂Ä − ∂2

φ − κe−4Ä +m2e−6Äφ2
]
9(Ä, φ) = 0, (13)

and can be written as a two-component Schroedinger equation (see e.g.,
Mostafazadeh, 1998). This allows one to think of cosmological squeezed states
based on the Ermakov approach (Hartley and Ray, 1982; Pedrosa, 1987; Pedrosa
and Bezerra, 1997). For this one makes use of the factorization of the Ermakov
invariant I = h(bb† + 1

2), whereb = (2h)−1/2[ q
ρ
+ i (ρp− eQcÄρ̇q)] and b† =

(2h)−1/2[ q
ρ
− i (ρp− eQcÄρ̇q)]. Qc is a fixed HH factor ordering parameter. Let

us now consider a reference Misner-time–independent oscillator with the Misner
frequencyω0 corresponds to an arbitrary epochÄ0 for which one can write
the common factorizing operatorsa = (2hω0)−1/2[ω0q + i p], a† = (2hω0)−1/2

[ω0q − i p]. The connection between thea andbpairs is given byb(Ä) = µ(Ä)a+
ν(Ä)a† and b†(Ä) = µ∗(Ä)a† + ν∗(Ä)a†, where µ(Ä) = (4ω0)−1/2[ρ−1−
ieQcÄρ̇ + ω0ρ] and ν(Ä) = (4ω0)−1/2[ρ−1− ieQcÄρ̇ − ω0ρ] fulfill the well-
known relationship|µ(Ä)|2− |ν(Ä)|2 = 1. The corresponding uncertainties are
known to be (1q)2 = h

2ω0
|µ− ν|2, (1p)2 = hω0

2 |µ+ ν|2, and (1q)(1p) =
h
2 |µ+ ν||µ− ν| showing that in general the Ermakov squeezed states are not
minimum uncertainty states (Pedrosa, 1987; Pedrosa and Bezerra, 1997).

Finally, we recall that (Courant and Snyder, 1958; also see second foot-
note in Lewis (1976)), the Ermakov invariant is equivalent to the Courant–Snyder
one in accelerator physics, which defines the admittance of the accelerating device.
This allows in a certain sense a beam physics approach to cosmological evolution.
The point is that under the assumption of no coupling between the radial and the
vertical betatron oscillations, the latter ones are described by the Hill equation
z′′ + n(s)κ2

oz= 0, wheren is the magnetic field index, andκo is the curvature of
the orbit parametrized bys that may be considered as a counterpart ofÄ. The
solutions can be written asz± = w(s)e±iψ(s) and only a realψ leads to bounded
oscillations. The amplitudew(s) satisfies an MP equation and moreoverψ = w−2.
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However, in “quantum” cosmology,ψ is a pure imaginary action functional lead-
ing to instabilities in the9 solutions. In other words, while in accelerators we
are interested in stable periodic solutions, in “quantum” cosmology there are the
unstable parametric solutions that come into play.
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